SCEJ 90th Annual Meeting Mar. 13, 2025

Particle distribution and conductivity in nanocomposite coatings: Effects of interactions between different particle species

ナノコンポジット塗膜内の粒子分布と導電性:異種粒子間相互作用の影響

Conducting / Insulating particles

Conductive nanocomposite coatings

Transparent conductive films (Latex + ATO)

Wakabayashi et al., Langmuir 23, 7990 (2007).

Komoda et al., J. Power Sources 568, 232983 (2023).

Previous study: Numerical simulation Drying of colloidal mixture (**Conducting** / **Insulating** particles)

Volume fraction of conducting particles

Conducting network

Conductivity

3

Tatsumi et al., SCEJ 52nd Autumn Meeting (2021).

Previous study: Effects of particle size ratio

Previous study: Effects of particle size ratio

Mixing ratio: 0.4

Previous study: Effects of interactions

Aqueous latex/ITO suspensions \rightarrow Composite coatings

SEM image

6

Sun et al., J. Colloid Interface Sci. 280, 387 (2004).

Objective & Method

Investigating the effects of interactions on the conductivity of colloidal films

(a) Numerical simulation analyzing the structure formation of particles during drying

(b) Equivalent circuit modeling to evaluate conductivity

Model: Particles' motion

$$\begin{split} m_i \dot{\boldsymbol{v}}_i &= -\zeta_i \boldsymbol{v}_i + \boldsymbol{F}_i^{\text{R}} + \boldsymbol{F}_i^{\text{cpl}} + \boldsymbol{F}_i^{\text{cnt}} + \boldsymbol{F}_i^{\text{DLVO}} \\ & \text{Fluid} \quad \text{Free surface} \quad \text{Particles} \end{split}$$

- Hydrodynamic force
 - Drag: $-\zeta_i \boldsymbol{v}_i$, Fluctuations: $\boldsymbol{F}_i^{\mathrm{R}}$
 - \rightarrow Brownian motion
- Capillary force: F^{cpl}

• Contact force: F^{cnt}

- DLVO force: **F**^{DLVO}
 - Electric double layer

/ Van der Waals attraction

h

No conducting paths $\rightarrow R = \infty$

Simulation conditions

Conducting / Insulating particles

- Diameter: **C**: d = 20 nm, **I**: 2d = 40 nm
- Initial volume fraction: $\phi_{\rm C} + \phi_{\rm I} = 0.3$

• Mixing ratio:
$$\alpha_{\rm C} = \frac{\phi_{\rm C}}{\phi_{\rm C} + \phi_{\rm I}} = 0.1 - 1$$

• Zeta potential: three conditions

Fluid: water

• Particle drying Péclet number (C) $Pe = \frac{(Drying rate)}{(Diffusion rate)} = \frac{U}{D/d} = 10$

System size: $20d \times 20d \times 20d$

Simulation conditions: DLVO potentials

Condition	Zeta potential /mV		Interaction		
	С		C-C	-1	C-I
Α	60	60	R	R	R
В	30	60	Α	R	R
С	60	-60	R	R	Α

Attractive Repulsive

Conductivity

Conductivity

Contact number (C-C)

Morisita's index: I_{δ}

Projection onto xy plane

Division into q subregions

$$I_{\delta} = q \frac{\sum_{j=1}^{q} n_j (n_j - 1)}{N(N - 1)}$$

 n_j : number of particles in *j*-th subregion

(a) Random $\rightarrow I_{\delta} = 1$ (b) Uniform $\rightarrow I_{\delta} < 1$ (c) Aggregated $\rightarrow I_{\delta} > 1$

Distribution of particles (C)

Summary

Distribution of conducting particles

(Resistance)