SCEJ 55th Autumn Meeting Sept. 13, 2024

Meso-macro modeling of slip casting

鋳込み成形のメソ・マクロ連携モデリング

O 辰巳 怜 (PIA)

辻 佳子

- 小池修 (PIA)
- 吉江 建一 (PIA)
 - (東大環安セ/東大院工)

Fabrication process of ceramics

https://www.britannica.com/technology/traditional-ceramics

Objective & Method

Meso-macro modeling of slip casting

Meso-scale (~1 µm, <1 ms) Discrete model Macro-scale (>1 mm, >1 s) Continuum model

formation

of the cast-

Macro-scale model

Ruth's filtration equation

Mass balance

(Liquid)
$$\dot{L} = v$$

(Solid)
$$(\phi_{\rm c} - \phi_0)L_{\rm c} = \phi_0 L$$

• Momentum balance $P = \eta v (R_0 + R_c) \approx \eta v R_c \quad (R_c \gg R_0)$ $R_c = L_c/k_c$ (Incompressible cake)

Permeation resistance

Cake thickness: $L_c = (Kt)^{1/2}$ $K = \frac{2\phi_0}{\phi_c - \phi_0} \frac{k_c P}{\eta}$ Filtrate volume per area: $L = \frac{\phi_c - \phi_0}{\phi_0} (Kt)^{1/2}$

Pressure: *P* Liquid viscosity: η Cake permeability: k_c

Meso-scale model

Meso-scale model

Additional terms for slip casting in Navier–Stokes equations

$$\rho(\partial_t \boldsymbol{v} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v}) = \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \Phi \boldsymbol{f}_{\mathrm{P}} + \boldsymbol{D} - \frac{\eta}{k_0} \Psi \boldsymbol{v}$$

External pressure gradient: $D = -\nabla p_{ex}$ Permeability of mold: k_0

• Generation of particles on inflow plane Volume generation rate per area: $\phi_0 v$

Simulation conditions

Particles

- Diameter: $d = 1 \,\mu m$
- Concentration: 40 vol%
- Zeta potential: 0 mV

Fluid: Water

DLVO potential

Varied parameters

• Pressure: $P^* \equiv Pd^2/F = 10^{-1} - 10^1$

System size: $8d \times 8d \times 16d$

Simulation results

Contact number 0

Cake growth (Meso-scale)

Packing density

10

Filtrate volume per area: L

Dehydration curve

Cake growth (Macro-scale)

$$K = \frac{2\phi_0}{\phi_c - \phi_0} \frac{k_c P}{\eta}$$

<i>P</i> *	P /kPa	$K/(\mathrm{mm}^2/\mathrm{s})$
0.1	1.5	0.17
1	15	0.69
10	150	3.7

$$P^* = \frac{Pd^2}{F} \qquad F = \frac{Ad}{24h_c^2}$$

 $A = 1 \times 10^{-20} \text{ J}$ $h_{\rm c} = 0.165 \text{ nm}$

