Direct numerical simulation of breakup of rod-like nano-particle aggregates under simple shear

> O. Koike^{*}, R. Tatsumi[†], Y. Yamaguchi^{*} * PIA, † U. Tokyo

単純剪断場における 棒状ナノ粒子凝集体の解砕シミュレーション 小池修*・辰巳怜[†]・山口由岐夫*

Colloidal Suspensions in Industrial Use

Coating

Chemical Mechanical Polishing

Flow field can induce athermal Particle structures

Size Distribution Orietation

Contact Network

Viscosity Thermal/Electrical Conductivity Optical Property Mass Diffusivity

Existing Work I - spherical particle -

$ \begin{array}{c} $	$F_{mij}^{t} \qquad i \qquad \Delta x^{t} \qquad \downarrow \qquad $
Flow :	Stokes dynamics
Particle :	DEM
	van der Waals force no friction rule
Efficiency of fragmentation :	
Shear flow $<$ Elongation flow	

Existing Work II - spherical particle -

Frictionless

Frictional

 $\mu = 0$ d [nm]: 50 $\mu = 1$ $D_{\text{fractal}}: 2.89$ $N_{\text{p}}: 297$ Koike et al., 2014 SCEJ 46th Fall Meeting 4/17

Average forces & Slip

Objective

To investigate breakup process of rod-like nano-particle aggregates by DNS

Method

- Direct Numerical Simulation by IBM + DEM (SNAP-F)
- Simple shear flow inside a plane-parallel channel

Equation of Fluid Motion Immersed Boundary Method

Equation of Bead Motion

- DEM + Coulomb's friction Non-slip condition between beads $|F_t^{co}| = \min(|F_t^{co}|, \mu|F_n^{co}|)$ $v_i + a\omega_i \times n_{ij} = v_j + a\omega_j \times n_{ji}$
 - Non-fracture inside rod

, but its fracture can directly be modeled

Simulation Condition

How to Make Single Aggregate

- · Confine particles in a droplet
- Shrink the droplet during drying
- Push particles into the center of droplet by capillary force

- Simple and efficient method
- It is hard to control the fractal dimension as in DLCA

Breakup Process of Aggregate

slcf=3.750e-07 m Z

Velocity

6.00e+01

0.00e+00

Frictionless $\mu = 0$

 $A = 3.5 \times 10^{-20}$

Fr= 0000

t= 0.000e+00 s

Frictional $\mu = 1$

化学工学会第48回秋季大会

Nondimensional Boundary Area NBA

Definition of NBA NBA = $\frac{1}{N} \left[\frac{1}{12} \sum_{c=0}^{12} (12 - c)n(c) \right]$

- n(c): number of particles with coordination number of c
- N : total number of particles

NBA = I : completely dispersed

NBA = 0 : close-packed

化学工学会第48回秋季大会 2016.9.6

Concluding Remarks

- DNS enable us to observe the detailed breakup process of the aggregate
- Friction should not be neglected for a relatively strong attractive system
- Friction acts nonlinearly on dispersion & orientation of rods
- Future work (i) : fracture of rods inside aggregate
- Future work (ii): its fracture mechanism of rods