Direct numerical simulation of pressure driven flow of rod-like fine particle dispersions

O. Koike^{*}, R. Tatsumi[†], Y. Yamaguchi^{*} * PIA, † U. Tokyo

棒状微粒子分散液の圧力駆動流れの 直接数値シミュレーション

小池修*・辰巳怜+・山口由岐夫*

Colloidal Suspensions in Industrial Use

Kneading Dispersing

Coating

Chemical Mechanical Polishing

Flow field can induce athermal Particle structures

Contact network Orietation

Viscosity Thermal/electrical conductivity Optical property Mass diffusivity

Rheology of Suspension

Pressure Driven Flow of Suspension

Spherical repulsive particle

 $Pe = 2 \times 10^4$ $\varphi_p = 0.3$ $Pe = 5 \times 10^4$

化学工学会第81年会 2016.3.15

小池・藤田・山口, 化工学会第44回秋季大会(2012) 4/15

化学工学会第81年会 2016.3.15

小池・藤田・山口, 化工学会第44回秋季大会(2012) 5/15

Objective

- To obtain structure formation process of rodlike fine particle dispersions under pressure driven flow
- Is there any difference from the case of spherical ones?

Method

- Direct Numerical Simulation by IBM + DEM (SNAP-F)
- Pressure driven flow inside a plane-parallel channel

Equation of Fluid Motion Immersed Boundary Method

Equation of Bead Motion

$$m\frac{dv_{p}}{dt} = F^{co} + F^{bead} + F^{D} + F^{h}$$

$$I\frac{d\omega_{p}}{dt} = T^{co} + T^{bead} + T^{h}$$

DEM + Coulomb's friction $|\mathbf{F}_{t}^{co}| = \min(|\mathbf{F}_{t}^{co}|, \mu|\mathbf{F}_{n}^{co}|)$ Nonslip condition inside rod $v_i + a\omega_i \times n_{ij} = v_j + a\omega_j \times n_{ji}$

Simulation Condition

1			Particle			
a	[nm]	•	100			
φ_{p}		:	0.1			
ζ	[mV]	•	-50			
Fluid						
C	[M]	:	10-1			
Pe	/104	•	2, 5			
T	[K]	•	293.15			
*Shear rate $4.3 \times 10^{6} [s^{-1}]$						

Apparent Viscosity

- S: corss section of flow path,
- H: height of flow path

Nondimensional Boundary Area NBA

Definition of NBA NBA = $\frac{1}{N} \left[\frac{1}{12} \sum_{c=0}^{12} (12 - c)n(c) \right]$

- n(c) : number of particles with coordination number of c
- N : total number of particles

NBA = I : completely dispersed

NBA = 0 : close-packed

Result Case:

 $Pe = 2 \times 10^4$ $\varphi_p = 0.1$ $Pe = 5 \times 10^4$

Result Case:

 $Pe = 2 \times 10^4$

 $Pe = 5 \times 10^4$

NBA & Apparent Viscosity

Concluding Remarks

- DNS gives the micro-scale structures of fine particle dispersions under flow
- DNS can give us criterion of orientation/deformation specific to rodlike particles
- Is there any difference from the case of spherical ones?
 >> Basically same : Criterion for agglomerating or dispersing