A study on rheology mechanism of bimodal nano-particle dispersions by DNS

O. Koike*, R. Tatsumi[†], Y. Yamaguchi^{*}

* PIA, † U.Tokyo

直接数値計算による二峰性ナノ粒子分散液の 流動メカニズムの検討

小池修*・辰巳怜⁺・山口由岐夫*

Flow of Bimodal Suspension

Demo (attractive system)

Size ratio, λ : 3

Coordination number

Colloidal Suspensions in Industrial Use

Kneading Dispersing

Flow field can induce athermal Particle structures

Chemical Mechanical Polishing

Rheology of Suspension

Mono-dispersed system

化学工学会第47回秋季大会 2015.9.11

 $\frac{3\pi\eta_s\dot{\gamma}d^2}{k_BT/d}$

trimodal silica suspensions at 55 vol% at a shear rate of 1000 s^{-1} (25°C, pH = 9.5, 0.01M NaCl).

*Shear rate 10^3 [s⁻¹]

A.A. Zaman & C.S. Dutcher. J.Am. Ceram. Soc., 89 (2006) 422

Objective

 To Obtain key factors in constructing rheology of bimodal nano-particle dispersions

Method

- Direct Numerical Simulation by IBM + DEM (SNAP-F)
- Pressure driven flow inside a plane-parallel channel

Equation of Fluid Motion Immersed Boundary Method

Equation of Particle Motion

Simulation Condition

Apparent Viscosity

- S: corss section of flow path,
- H: height of flow path

$$g = 12 (32)$$
 : channel (pipe)

化学工学会第47回秋季大会 2015.9.11 d=200, 100 [nm], $\varphi_{\rm p}=0.4$

11/14

化学工学会第47回秋季大会 2015.9.11 $d = 1000, 500 \text{[nm]}, \phi_p = 0.5$

Concluding Remarks

 Present simulation could lead us to a general function of the suspension viscosity:

$$\eta_a = F(\varphi_p, \lambda_p, X_s; \text{Pe}, \Delta W(d_i))$$

• What's the origin of bimodal particle structure induced by shear flow field ? future work